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The neural network method is trained using back propagation with a series of heat 
capacities (Cv) in the temperature range 10 to 200 K for the skeletal vibration of 36 linear 
macromolecules. The trained network could then accurately extract both parameters of the 
Tarasov function (O1 and 03) from heat capacities of three computed test cases and a set of 
experimental measurements for polyethylene. The neural network method offers a major im- 
provement in handling heat capacity data. 

I. Introduction 

Heat capacities of macromolecules in the solid state have been charac- 
terized in a variety of ways. One of the most widely used approximate 
methods is the Tarasov analysis. In this approach, a combination of one- and 
three-dimensional Debye functions is chosen to model the skeletal heat 
capacities of a linear macromolecule and compute the temperature depen- 
dence of Cv [1]. Since the Debye functions are not available in closed form, an 
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inversion of heat capacities to the approximate vibrational spectrum can only 
be done by trial and error [2]. These techniques to extract the parameters in 
the Tarasov equation from experimental data are tedious and suffer from ac- 
curacy problems. In this paper we show that a neutral network can learn the 
mathematical transformation from Cv to the two parameters in the Tarasov 
equation, the temperatures or frequencies O1 and 03. 

Previously we have used the neural networks to learn both molecular 
dynamics [3] and quantum mechanics [4] for some interesting examples. 
These are some of the first examples of application of neural net extrapola- 
tions to complex problems in physical chemistry. In the next section, we 
describe briefly the neural network approach along with the necessary back- 
ground for the modeling of heat capacities of solid polymers. The results of 
our calculation are presented in Section III. 

II. A. Heat capacities 

The historical perspective of heat capacities for idealized models is well 
known and will not be discussed here [5]. For macromolecules it has been 
found that group vibrations contribute little to low temperature heat 
eapacities(Cv) and are well approximated using a summation of Einstein 
functions [6]. For the skeletal vibrations, it has been found that they can be 
approximated by a combination of Debye functions. The one-, two-, and 
three-dimension Debye functions D1, Dz and D3 in units of NR (where R is 
the gas constant and N is the number of vibrators) are given by 

Olrr 

(~---~)fo(O/T)Z'e(~ (1) D1 (01/T) = ( e (~  1) 2 

O2ff 

( 2y ~ D2 (O2/T) = 2 --tOm_ 1.2 , (2) 

and 

O3rr 

D3 (03/T) = 3 --tea) 1.2 d(O/T),  (3) 
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respectively. DI(OJT) is based on a constant frequency distribution with fre- 
quency, Dz(| on a linear distribution, and D3 (| on a quadratic dis- 
tribution. The parameters O1, O2, and 03 are the characteristic upper 
frequencies for these approximations to the density of vibration states and 
represent hv/k, where h is Planck's constant and k is Boltzmann's constant 

(1 k = 0.695 era-l). 
Using a combination of Eqs (1) and (3) to approximate the heat capacities 

of macromoleeules, Tarasov [1] has proposed the form 

c ( r ) m R  = DI ( e l / r )  - [D1 ( e j r )  - ( e s r ) ]  

to model the functional form of Cv(T). Wunderlich et al. have successfully 
used this approach for a variety of polymer systems [2, 7]. However, it turns 
out that the inversion of Cv vs. T for O1 and 03 is not trivial and requires a 
complex procedure. In this paper, a neural network described in the next 
section is used for the inverse transformation. 

II. B. Neural networks 

Artificial neural networks (ANNs) are computational tools. They can be 
thought of as mathematical functions with generalized estimation and predic- 
tion capabilities, and as a scheme for complex computations that can be dis- 
tributed among several processors [8]. This technique can be used to extend 
the data gained by simulation to longer times, extract parameter dependency, 
and even analyze the results of simulation to extract various functional 
properties. Whereas in classical approximation techniques such as para- 
metric regression or spline smoothing the main problem involves the deter- 
mination of a set of parameters and/or functions, ANNs require the 
computation of a set of weights associated with the connections of simple 
processing elements, called neurons. 

Different types of networks are categorized by the manner that weights 
are computed - called the training or learning algorithm - and the manner in 
which neurons are arranged - called the architecture of the network. A typi- 
cal architecture has an input layer of neurons, one or more middle or 'hidden' 
layers, and an output layer. 

The ANNs considered in this research are given a set of known-to-be-cor- 
rect input/output pairs, called examples, and their weights are adjusted in 
order to best represent these examples through the back propagation learn- 
ing algorithm [9]. The name back propagation is due to the procedure for up- 
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dating the weights during training in which, when the network corrects its in- 
ternal parameters, the correction mechanisms start with the output units and 
propagate backwards through each hidden layer to the input layer. 

Each neuron of an ANN constitutes a processing element (PE), and it is 
connected through various weights, w~j, to other PEs. The processing element 
sums the product of each input and the connection weights from the previous 
layer of PEs and then filters it by a nonlinear thresholding function of the 
form 

1 
f (x)  - 1 + e -'=~' ,8>0, (5) 

In general, for a multilayer network, the output of the j  th PE in layerp is 
given by 

tj t (6) 

where the thresholding functionf has the sigmoidal form of Eq. (5) and 0 p is 
the bias associated with the j th PE of layer p. The weights w~j are initialized 
randomly and then adjusted during training. Training the network means es- 
tablishing the values of these weights between pairs of processing elements. 
The local error at each node is computed and the connection weights are 
adjusted to minimize the global error through a gradient descent algorithm. 
The computational burden in the application of multilayered ANNs lies 
primarily in network training. The weights of the network are fLxed after 
training is completed. These values are then used during 'recall' sessions, 
i.e., when an unknown input is presented to the network and it computes the 
appropriate output. The computations required in the recall sessions are 
negligible; i.e. larger training sessions can be carried out on supercomputers 
and, once the weights are fixed, they can be transferred for use on personal 
computers for quick data analysis. 

IlL Calculation and results 

Our neural network procedure using the back propagation method is in- 
corporated in the NNETS program [9]. We have installed the floating point 
version of this program [10] on a CRAY-XMP at ORNL. Our 4-layer network 
consists of an input layer containing Cv(T) with 15 nodes. Two hidden layers 
contained 5 nodes each. A 2-node output layer contained the value of O1 and 
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03. Thirty-six training examples were considered, and the network learned 
the relationship between C~(T) and Ox, 03 to an average error of less than 1 K 
with a maximum error of 2.5 K. The ranges chosen for O1 and O3 were 440 to 
540 K and 100 to 200 K, respectively, in steps of 20 K. The CRAY required 
=20 minutes for the ~30.000 cycles of the learning process. In the recall 
process, an insignificant amount of CPU time is needed. A major advantage 
to this method is that a very large number of inversions can be performed on 
even an IBM PC as the weights generated are transportable. In Table 1, the 
predicted results are presented for three theoretical examples [C, vs. T 

generated from Eq. (4) without added noise] and an experimental determina- 
tion of the heat capacity for polyethylene (with the group vibration subs- 
traeted out) [11]. In each of these cases, the errors are on the order of 1 to 
2 K, as expected from the errors computed from the training data. 

Table I Neural network predictions 

Predicted values by the neural network / 
K 

Input Cv computed from the given 
O-values / K 

Ol, O3 O1 O3 

450.4 148.6 450 150 

529.7 191.0 530 190 

489.4 108.5 490 110 

518.8 156.9 519• 158• 

*Cv generated from Eq. (4). 
**Polyethylene data, O1, 03 previously found using the inversion described in Refs 2 and 11. 

IV. Conclusion 

We have presented a new method for extracting the O1 and 03 parameters 
in the Tarasov equation for modeling the temperature dependence of C, for 
solid macromolecules. This technique was demonstrated to lead to an ac- 
curacy of ~1 K, which is a considerable improvement over prior methods. 
Since other network configurations may produce even better results, we are 
presently working to optimize the method. Also, information contained in the 
weights can be analyzed to determine what features of Cv vs. T are most close- 
ly related to | and 03. In a future, more detailed report, we hope to address 
some these topics and produce a set of weights that permits easy access to 
this otherwise involved inversion. 

Thermal AnaL, 3Z 1991 



2300 NOID et al.: NEURAL NETWORK INVERSION 

We acknowledge helpful discussions with Dr. B. G. Sumpter on neural networks and 

Dr. A. Xenopoulos on heat capacities. 

References 

1 V. V. Tarasov, Zh. Fis. Khim., 24 (1950) 111; 27 (1953) 1430; 39 (1965) 2077; and Dokl. Aead. Nauk 
SSSR, 100 (1955) 307. 

2 Yu.. V. Cheban, S. F. Lau and B. Wanderlich, Coll. Polym. Sei., 260 (1982) 9. 
3 D. W. Noid and J. A. Darsey, Comp. Polym. Sci., 1 (1991) 157. 
4 J. A. Darsey, D. W. Noid and B. IL Upadhyaya, Chem. Phys. Lett., 177 (1991) 189. 
5 C. E. Hecht, Statistical Thermodynamics and Kinetic Theoxy, Ch. 4, W. H. Freeman and Co., 1990; 

M. Blackman, Eric. of Physics, Ed. S. Fliigge, Vol. HI, Part I, Springer, Berlin 1955. 
6 B. Wanderlich and H. Baur, Adv. Polym. Sci., 7 (1970) 151. 
7 H. S. Bu, S. Z. D. Cheng and B. Wunderlich, J. Phys. Chem., 91 (1987) 4179. 
8 For a comprehensive discussion of neural networks, see IL Heeht-Nielson, Neuroeomputing 

Addison-Wesley, New York 1990. 
9 D. Rumelhart and J. McClelland, Parallel Distributed Processing, Vol. 1, Bradford Books/MIT 

Press, Cambridge MA 1986. 
10 P. T. Baffes, NNETS Program, Version 2.01, Johnson Space Center Report No. 23366, September 

1989. 
11 J. Grebowiez, H. Suzuki and B. Wunderlich, Polymer, 26 (1985) 561. 

Z u s a m m e n f a s s u n g - - D i e  Neural-Network Methode wird zur Bestimmung der Wtirme 
kapacittit (Cv) yon 36 linearen Makromoleki~l-Gerfistschwingungen im Temperaturbereich 
10-200 K angewendet. Das pr~iparierte System ist dann in der Lage, bei drei rechnerischen 
Testf~illen und einer Reihe yon experimentellen Messungen an Polyethylen aus den 
Wiirmekapazittiten beide Parameter der Tarasov-Funktion (O1 und 02) genau zu ermitteln. 
Die Neural-Network Methode stellt eine wesentliche Verbesserung zur Handhabung yon 
W~irmekapazitfitsangaben dar. 
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